추천 검색어

최근 검색어

도서 IT 전문서 데이터베이스/데이터분석
원리를 쉽게 이해하고 나만의 딥러닝 모델을 만들 수 있다 모두의 딥러닝
정 가
24,000원
출 간
2017-12-27
지 은 이
조태호
I S B N
9791160503715
분 량
308쪽
난 이 도
입문
부 록
예제 파일

초보자와 비전공자를 위한 명품 딥러닝 입문서

딥러닝을 전혀 모르는 사람이 봐도 술술 읽을 수 있게 쉽게 설명한다. 또한, 딥러닝의 원리를 잘 보여주는 예제를 엄선하여 직관적인 몇 줄의 코드로 강력한 딥러닝을 구현해볼 수 있다. 다양하고 실질적인 예제를 통해 재미있게 학습할 수 있으며, 모든 예제는 가상 머신을 설치할 필요 없이 윈도 10에서 손쉽게 실행할 수 있어 편리하다. 복잡한 수식은 최대한 줄이고 고급 기술은 심화 학습에서 추가로 학습할 수 있게 단계별로 구성하였다. ‘이론 없는 실습’, ‘실습 없는 이론’이 아닌 이론과 실습 두 날개의 균형을 잡음으로써, 배운 내용을 올바로 이해하고 실전에서 제대로 써먹을 수 있도록 안내한다. 이 책을 읽고 나면 ‘나의 사례’에 적합한 딥러닝 모델을 구현할 수 있을 것이다.

[첫째 마당] 나의 첫 딥러닝
1장 최고급 요리를 먹을 시간
__1.1 딥러닝 실행을 위한 준비 사항
__1.2 딥러닝 작업 환경 만들기
__1.3 파이참 설치하기
__1.4 딥러닝 실행하기

2장 처음 해 보는 딥러닝
__2.1 미지의 일을 예측하는 힘
__2.2 폐암 수술 환자의 생존율 예측하기
__2.3 딥러닝 코드 분석
__2.4 ‘블랙박스’를 극복하려면?


[둘째 마당] 딥러닝의 동작 원리
3장 가장 훌륭한 예측선 긋기: 선형 회귀
__3.1 선형 회귀의 정의
__3.2 가장 훌륭한 예측선이란?
__3.3 최소 제곱법
__3.4 코딩으로 확인하는 최소 제곱
__3.5 평균 제곱근 오차
__3.6 잘못 그은 선 바로잡기
__3.7 코딩으로 확인하는 평균 제곱근 오차

4장 오차 수정하기: 경사 하강법
__4.1 미분의 개념
__4.2 경사 하강법의 개요
__4.3 학습률
__4.4 코딩으로 확인하는 경사 하강법
__4.5 다중 선형 회귀란?
__4.6 코딩으로 확인하는 다중 선형 회귀

5장 참 거짓 판단 장치: 로지스틱 회귀
__5.1 로지스틱 회귀의 정의
__5.2 시그모이드 함수
__5.3 오차 공식
__5.4 로그 함수
__5.5 코딩으로 확인하는 로지스틱 회귀
__5.6 여러 입력 값을 갖는 로지스틱 회귀
__5.7 실제 값 적용하기
__5.8 로지스틱 회귀에서 퍼셉트론으로


[셋째 마당] 신경망의 이해
6장 퍼셉트론
__6.1 가중치, 가중합, 바이어스, 활성화 함수
__6.2 퍼셉트론의 과제
__6.3 XOR 문제

7장 다층 퍼셉트론
__7.1 다층 퍼셉트론의 설계
__7.2 XOR 문제의 해결
__7.3 코딩으로 XOR 문제 해결하기

8장 오차 역전파
__8.1 오차 역전파의 개념
__8.2 코딩으로 확인하는 오차 역전파

9장 신경망에서 딥러닝으로
__9.1 기울기 소실 문제와 활성화 함수
__9.2 속도와 정확도 문제를 해결하는 고급 경사 하강법


[넷째 마당] 딥러닝 기본기 다지기
10장 모델 설계하기
[실습] 폐암 수술 환자의 생존율 예측
__10.1 모델의 정의
__10.2 입력층, 은닉층, 출력층
__10.3 모델 컴파일
__10.4 교차 엔트로피
__10.5 모델 실행하기

11장 데이터 다루기
[실습] 피마 인디언 당뇨병 예측
__11.1 딥러닝과 데이터
__11.2 피마 인디언 데이터 분석하기
__11.3 panda를 활용한 데이터 조사
__11.4 데이터 가공하기
__11.5 matplotlib를 이용해 그래프로 표현하기
__11.6 피마 인디언의 당뇨병 예측 실행

12장 다중 분류 문제 해결하기
[실습] 아이리스 품종 예측
__12.1 다중 분류 문제
__12.2 상관도 그래프
__12.3 원-핫 인코딩
__12.4 소프트맥스
__12.5 아이리스 품종 예측 실행

13장 과적합 피하기
[실습] 초음파 광물 예측
__13.1 데이터의 확인과 실행
__13.2 과적합 이해하기
__13.3 학습셋과 테스트셋
__13.4 모델 저장과 재사용
__13.5 k겹 교차 검증

14장 베스트 모델 만들기
[실습] 와인의 종류 예측
__14.1 데이터의 확인과 실행
__14.2 모델 업데이트하기
__14.3 그래프로 확인하기
__14.4 학습의 자동 중단

15장 선형 회귀 적용하기
[실습] 보스턴 집값 예측
__15.1 데이터 확인하기
__15.2 선형 회귀 실행

[다섯째 마당] 딥러닝의 활용
16장 이미지 인식의 꽃, CNN 익히기 204
__16.1 데이터 전처리
__16.2 딥러닝 기본 프레임 만들기
__16.3 더 깊은 딥러닝
__16.4 컨볼루션 신경망(CNN)
__16.5 맥스 풀링
__16.6 컨볼루션 신경망 실행하기

17장 시퀀스 배열로 다루는 순환 신경망(RNN)
__17.1 LSTM을 이용한 로이터 뉴스 카테고리 분류하기
__17.2 LSTM과 CNN의 조합을 이용한 영화 리뷰 분류하기
__17.3 케라스 예제를 통한 더 넓은 활용

부록
[부록 A] 심화학습 1: 오차 역전파의 계산법
1. 편미분이란?
2. 출력층의 오차 업데이트
3. 오차 공식
4. 체인 룰
5. 체인 룰 계산하기
6. 가중치 업데이트하기
7. 은닉층의 오차 업데이트
8. 은닉층의 오차 계산 방법
9. 델타 식

[부록 B] 심화학습 2: 파이썬 코드로 확인하는 신경망
1. 환경 변수 설정하기
2. 신경망의 실행

[부록 C] 심화학습 3: 수식과 함께 익히는 고급 경사 하강법
1. 확률적 경사 하강법
2. 모멘텀
3. 네스테로프 모멘텀
4. 아다그라드
5. 알엠에스프롭
6. 아담

[부록 D] 여러 가지 환경 설정
1. GPU 환경에서 설치하기
2. 리눅스에서 설치하기
3. 맥에서 설치하기

[부록 E] 텐서플로 실행 오류 해결하기
ㆍ지은이 조태호
지은이 소개

머신 러닝, 딥러닝을 이용해 알츠하이머 질병을 연구하며 틈틈이 책을 쓰고 번역한다. 일본 도쿄의과치과대학에서 단백질 구조 예측으로 박사학위를 받았고, 미국으로 이주해 단백질 구조 예측에 딥러닝을 도입하는 연구를 했다. 2018년부터 미국 인디애나 대학교 의과대학에 재직하며 딥러닝을 이용한 알츠하이머 진단(2019), 딥러닝을 이용한 알츠하이머 원인 단백질 추적(2020), 딥러닝을 이용한 유전자 변이 예측(2021) 등을 연구하고 진행했다

저서

모두의 딥러닝』 

7회 브런치북 대상 수상작 당신의 이유는 무엇입니까』 


필요한 자료를 선택하세요.

추천도서